Are tablets up to the task of accurate color testing?

Finally getting around to posting a follow-up to a follow-up to John The Math Guy’s recent series on color gamut size, colorblindness and tablet displays. I thought I might be able to at least shed a little more light on his question about the differences in color accuracy between some of these devices.

In his testing, John found no statistically significant difference in scores among different people taking the EnChroma colorblindness test on different devices. I found this somewhat surprising since, in my experience, even tablets with similar color gamuts tend to show colors with very different levels of accuracy.

iPad mini color gamut and Gretag Macbeth colors against sRGB in CIE1976

To show what I mean by that, I measured how two different tablets show the colors found in the Gretag Macbeth color checker chart.Nexus 7 color gamut and Gretag Macbeth colors against sRGB in CIE1976

As you can see, the iPad mini and Nexus 7 each produce very different colors, even for those colors that are actually inside their gamuts.

For example, even though the iPad mini has enough gamut coverage to accurately display the Gretag chart’s deepest blue, it cannot do so without distorting the image in another way. This is because of data in the underlying image standard- most content today is encoded in the sRGB standard. If the iPad were to show that Gretag blue correctly, it would not have enough color saturation headroom left over to show you a different color if a deeper blue, say right at the bottom of the sRGB triangle, were called for.

A good real world example of this can be found in the picture below of my bloodhound, Louisa, racing down the beach at Carmel, CA. The middle of the sky in this image is right on the edge of the iPad’s color gamut, very similar to the Gretag blue in the charts above, while the deepest blues found in the ocean fall outside the iPad’s gamut.

Out of gamut colors at beach

If the iPad were striving for accuracy at all costs, it might map both colors right on top of each other at the edge of the gamut. There’d be no visible difference between the two in this case and the quality of the image would suffer but at least the sky would be accurate. In order to avoid this scenario, the designers of these devices have decided to compromise on accuracy so they can show a full range of color differences to the user.

They do this by remapping colors inward, away from the edges of the gamut, effectively compressing the gamut even further so that otherwise out-of-gamut colors can be seen. This is a good solution given the gamut limitations of the device since it results in more pleasing, if less accurate images.

As newer devices trend towards wider color gamuts this kind of compromise should become a thing of the past. In fact, tablet designers may be working on the reverse issue- how to avoid oversaturating images that were encoded for smaller gamuts.

Great, how does this relate to colorblindness again?

iPad mini vs Nexus 7 color accuracy comparison in CIE 1976

iPad mini vs Nexus 7 color accuracy comparison in CIE 1976

Taking another look at the Gretag results from the two devices plotted on top of each other, there clearly are major differences. But, in the reds and greens, two colors associated with a common form of color blindness, the devices are relatively close. So, the simple answer may just be that colorblindness tests do not require pinpoint accuracy to be effective, at least as basic screening tools.

The case for wide-gamut in your photography workflow, even if you are exporting to sRGB

This is a great, exhaustive tutorial on managing color gamut for photographers by color expert Andrew Rodney. He does a great job making the case for working in wide gamut color spaces like Pro Photo, especially when capturing in RAW. Using smaller gamuts like sRGB throws away useful color data that printers and more and more displays can recreate.

How does ink thickness change the appearance of printed color?

We typically focus on color as it relates to displays here at dot-color, but I came across a fascinating post about color in the print industry from John the Math Guy that I had to share. In this post, John takes a close look at how ink looks at different thicknesses and uncovers the reasons for some seemingly unconventional color-naming habits in the print industry.

What happens when we double the amount of ink on the paper? …it would seem that the thick layer of magenta is a lot closer to red. The plot below shows the actual spectra of two magenta patches, one at a larger ink film thickness than the other. The plot leads one to the same impression – that a thick layer of magenta is closer to red in hue than a thin layer.

Chart shows different spectrums of thick (red line) and thin (blue line) layers of magenta ink.

Read the whole thing here:  http://johnthemathguy.blogspot.com/2012/09/why-does-my-cyan-have-blues.html

 

DisplayDaily: Is quantum dot lifetime good enough for TV?

Ken Werner of Display Central has a post comparing the benefits of quantum dots to OLEDs in consumer TV applications.  Being the authority on quantum dot displays that we are here at Nanosys, Ken contacted us for an analysis.  Here is the explanation our Ph.Ds gave Ken:

OLEDs use organometalic compounds to emit light. They typically have a central metal atom surrounded by organic ligands. The decay issues are the same as with typical organic fluorophores.  In the excited state these molecules are very reactive to H2O and O2, as well as other small molecules that may be around. Once they react they become a different molecule and they will no longer fluoresce or phosphoresce and give off light. The more blue the light emission, the higher the energy of the excited state, and the more reactive the excited molecule will be. So your blue organic phosphores will have a much shorter lifetime than will red phosphores. The burn-in problem seen in OLED displays, that can be seen after just several weeks of operation with static content, is a manifestation of early blue degradation compared to green and red.

Conventional phosphores like YAG are doped materials. YAG used in white LEDs is actually cerium doped YAG. The cerium atom emits the yellow light and is surrounded by a vast amount of YAG. Quantum dots are similar in that a central core crystalline semiconductor material is used to confine the holes and electrons of the exciton (analogous to the cerium in YAG), and in our material this is surrounded by a thick shell of a different, lattice-matched semiconductor material (analogous to the YAG.) We call this a core-shell Quantum Dot structure. If the lifetime of our materials is less than that of conventional phosphors, it is typically because we have not made a perfectly lattice-matched shell, which may distort the core and cause defects at the core/shell interface that reduces the quantum yield.

The big difference here is that a perfectly made core-shell quantum dot does not have an intrinsic lifetime failure mechanism, whereas the organometallic compounds are intrinsically reactive to their environment, which makes them prone to shorter lifetimes especially at higher energies such as blue.

This is an important discussion, because TVs are a harsh environment for display components, running much hotter and brighter than tablets or mobile phones.  You can read the entire post here: http://www.display-central.com/flat-panel/is-quantum-dot-lifetime-good-enough-for-tv/

Seeing red: can color change your spending habits?

Color can have a powerful physiological effect on us. This should come as no surprise to anyone who’s ever been wowed by a Monet or a Rothko. But color can affect us in ways you never imagined. Recent studies suggest that that the color of a uniform can affect the outcome of an Olympic wrestling match and onscreen colors can influence how much you pay for something on eBay.

In one study, researchers found that Olympic wrestlers wearing red won as much as 60% of the time, even against evenly matched opponents (who wore a different color).

US Wrestler Jake Varner (red) on his way to defeating Valerie Andriisteve of Ukraine in the 96-kg freestyle wrestling gold match in London. Credit: The ASSOCIATED PRESS

Similarly, in a Journal of Consumer Research study on the impact of color on consumers who buy items on auction sites like eBay, authors Rajesh Bagchi and Amar Cheema found that “red background color induces aggression through a feeling of arousal and it increases aggression relative to blue or gray backgrounds. This causes individuals to make higher bids in auctions but lower offers in negotiations.”

Why? The exact mechanism remains a mystery but researchers see some evidence that aggressive colors like red may actually cause a spike in testosterone levels.

I find it particularly fascinating that color choice did not specifically correlate to the price someone paid for an item. Instead, the colors drove more or less aggressive behavior, which lead participants to either seek the best deal possible against a salesperson or to beat out competing bids in an auction.

It got me wondering how retailers might be using color to influence purchasing. A quick survey of some popular online shopping destinations yielded potentially interesting results. Since product background is not always in the control of the retailer, I looked at the “add to cart” areas of three popular online retailers: Apple, Amazon and eBay.

All three employ a lot of blue, a calming color, in their ‘add to cart’ areas. Apple uses a shade of green, another calming color, for the “add to cart” button. Amazon lists the price in a dark red, while Apple uses a lighter shade to accentuate free shipping.

Next time you find yourself shopping either online or brick and mortar, take note of the colors around you – you may be surprised by how far your environment is being manipulated to get you to pay more.

Even on Mars, color matters

One of the most important pieces of equipment on the Curiosity rover is not a spectrometer or a laser but a color calibration chart. Nothing is simple when you’re sending a robot on a 354 million mile journey into space, but NASA and Bill Nye (yes, the “science guy”) came up with an ingenious solution to calibrate the colors of the onboard cameras.

In order for NASA scientists to be sure that we are seeing “The Red Planet“ in the correct shade of red, they attached red, green and blue color chips to a sundial on the surface of the rover. These reference colors will guarantee the amazing photos we are seeing of the Martian landscape are accurate.

Here is an animated gif of the sundial on the surface of Mars and a close-up shot of it before it left Earth:

Color Space Confusion

For many who are new to the world of display measurement, the prevalence of two distinct, but often-interchanged color spaces can be a source of confusion. Since my recent post about the color performance of Apple’s new iPad, a number of people have asked about this topic, so I thought it would be worth a closer look.

In the world of displays and color images, there exists a variety of separate standards for mapping color, CIE 1931 and CIE 1976 being the most popular among them. Despite its age, CIE 1931, named for the year of its adoption, remains a well-worn and familiar shorthand throughout the display industry. As a marketer of high color gamut display components, I can tell you from firsthand experience that CIE 1931 is the primary language of our customers. When a customer tells me that their current display “can do 72% of NTSC,” they implicitly mean 72% of NTSC 1953 color gamut as mapped against CIE 1931.

However, from the SID International Committee for Display Metrology’s (ICDM) recent, authoritative Display Measurement Standard:

“…we strongly encourage people to abandon the use of the 1931 CIE color diagram for determining the color gamut… The 1976 CIE (u’,v’) color diagram should be used instead. Unfortunately, many continue to use the (x,y) chromaticity values and the 1931 diagram for gamut areas.”

So why are there two standards, and why are we trying to declare one of them obsolete? Let me explain.

What is a color space?

First, a little background on color spaces and how they work.

While there are a number of different types of color spaces, we are specifically interested in chromaticity diagrams, which only measure color quality, independent of other factors like luminance. A color space is a uniform representation of visible light. It maps the all of the colors visible to the human eye onto an x-y grid and assigns them measureable values. This allows us to make uniform measurements and comparisons between colors, and offers certainty that images look the same from display to display when used to create color gamut standards.

In 1931, the Commission internationale de l’éclairage or CIE (International Commission on Illumination in English) defined the most commonly used color space. Here’s a look at the anatomy of the CIE 1931 color space:

What makes a good color space?

An effective color space should map with reasonable accuracy and consistancy to the human perception of color. Content creators want to be sure that the color they see on their display is the same color you see on your display.

This is where the CIE 1931 standard falls apart. Based on the work of David MacAdam in the 1940’s, we learn that the variance in percieved color, when mapped in the CIE 1931 color space, is not linear from color to color. In other words, if you show a group of people the same green, then map what they see against the CIE 1931 color space, they will report seeing a wide decprepancy of different hues of green. However, if you show the same group a blue image, there will be much more agreement on what color blue they are seeing.  This uneveness creates problems when trying to make uniform measurements with CIE 1931.

The result of MacAdam’s work is visualized by the MacAdam Elipses.  Each elipse represents the range of colors respondents reported seeing when shown a single color, which was the dot in the center of each elipse:

A better standard

It was not until 1976 that the CIE was able to settle on a significantly more linear color space. If we reproduce MacAdam’s work using the new standard, variations in percieve color are minimalized and the MacAdam’s Elipses mapped on a 1976 CIE diagram appear much more evenly sized and circular, as opposed to oblong. This makes color comparisons using CIE 1976 significantly more meaningful.

The difference of the CIE 1976 color space, particularly in blue and green, is immediately apparent. As an example, lets look at the color gamut measurements of the iPad 2 and new iPad we used in an earlier article. Both charts do a reasonably good job of conveying the new iPad’s increased gamut coverage at all three primaries. But, the 1976 chart captures the dramatic perceptual difference in blue (from aqua to deep blue) that you actually see when looking at the displays side by side:

The increased gamut of the new iPad is worth testing. Next time you find yourself in an Apple store, grab an iPad 2, hold it alongside a new iPad, Google up a color bar image and see the difference for yourself.

So, why do we still use CIE 1931 at all?  The only real answer is that old habits die hard.  The industry has relied on CIE 1931 since its inception, and change is coming slowly.

Fortunately, CIE 1931’s grip is loosening over time. The ICDM’s new measurement standard should eventually force all remaining stragglers to switch over to the more accurate 1976 standard. Until then, you can familiarize yourself with a decent color space conversion calculator, such as the handy converter we built just for this purpose: