Smartphone displays continue to get sharper- how much resolution do we really need?

Last week DisplaySearch put out a new report on the current trend towards ever higher display resolutions. High resolution displays now make up most of the market for handhelds and 300+ ppi “retina-class” resolutions are coming on strong:

Smartphones and handheld devices are moving rapidly to high resolution. 200+ ppi will account for 54% of unit share in in 2013, with 24% of unit share to be 300+ ppi. Even higher resolution panels in the FHD class will emerge. 400-500 ppi FPDs are expected to hit the market with fast shipment growth in 2013. (source: DisplaySearch)

Not exactly earth shattering news. The display industry began rapidly moving towards higher resolutions the moment Apple first unveiled the retina display with it’s iPhone 4 in 2009. What is interesting here is that the trend shows no signs of abating, even as resolutions approach or surpass the acuity of the average human eye.

Highest resolution smartphone from 2009 to 2013 as a percentage of what the human eye can detect

Best performing smartphones in terms of display resolution from 2009 to 2013. Shown as a percentage of what the average human eye can detect.

The HTC One is leading the charge this year at 468 ppi. According to Dr. Ray Soneira of DisplayMate, that’s already equivalent to Apple’s retina display for eyes with 20/20 vision at a distance of just 7.4 inches from the eye- much closer than an average user will typically hold the device.

The question is- just how noticeable are additional increases in resolution beyond 400-500 ppi going to be for consumers? In my view, resolutions above 530 ppi will be wasted on the vast majority of users. Unless you have near perfect vision and hold your phone excessively close to your eye, you just won’t be able to see the difference. Still, device makers seem intent on pushing resolution as far as they can- some manufacturers I spoke with at DisplayWeek 2013 even talked about 4K smartphones!

It’s a shame because there are many other display performance characteristics that would benefit users. They may sound like less exciting specs but color performance, sunlight readability (a combination of reflectance, brightness and color saturation), and efficiency would all improve usability much more than another 50 or 100 ppi in resolution.

Adobe’s Kuler color app is a great tool for designers but is your display accurate enough for it?

Screenshot of Adobe's Kuler app showing color extraction from a photo

Screenshot of Adobe’s Kuler app showing color extraction from a photo

Adobe recently released a new iPhone app called Kuler that let’s you extract colors from your surroundings using the phone’s camera. It’s a useful tool that allows designers to capture color inspiration wherever they find it and easily incorporate it into their work via color palettes.

The app also highlights a weakness in current display technology: no display on the market today can actually reproduce all the colors we see in the environment around us. So, even if the camera sensor can capture that color you love, you may not be seeing an accurate representation of it on your device.

The iPhone 5’s LCD display is designed to cover the sRGB/rec.709 color gamut standard used for HDTV broadcasts. And, it looks great but compared to the world we see around us, it’s just not quite as rich. If we plot the iPhone 5’s color gamut against the gamut of colors found in nature, the phone comes up short in important reds, greens and cyans:

Color gamut of the iPhone 5's display compared to the gamut of colors found in nature. The iPhone 5 comes up short in red, green and cyan.

Color gamut of the iPhone 5’s display compared to the gamut of colors found in nature. The iPhone 5 comes up short in red, green and cyan.

If DisplayWeek 2013 was any indication, color has once again become a hot topic in the display industry. Color gamuts are getting larger and it may not be long before we see a display that can match what our eye sees in nature. Over the course of the next year, we will start to see more wide color gamut-capable devices as OLED continues to expand marketshare and new technologies like quantum dot LCD begin to enter the market in volume.

DisplayWeek 2013: Color is back

Just back from a great DisplayWeek in Vancouver. Finally had a chance to recover, go through my notes and process everything I saw at the show. Most of the big story lines will be pretty familiar to anyone who followed last years show: TV’s are still getting bigger, OLED TV is still right around the corner, 4K is starting to ship and mobile displays are getting both sharper and more efficient.

DisplayWeek wasn’t all old news though. In fact, just like CES, this year everyone seemed to be talking about color performance. At the annual Display Industry Awards, honors in several categories went to wide gamut display technologies including the Best In Show and Component of the Year awards. And, on the show floor, major manufacturers like 3M, Samsung and LG dedicated significant booth space to wide color gamut or color management technologies.

3M's Quantum Dot Enhancement Film demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wide color gamut.

3M’s Quantum Dot Enhancement Film (QDEF) demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wider color gamut than OLED at higher brightness and lower cost.

3M demoed several wide color gamut LCDs  based on the Quantum Dot Enhancement Film (QDEF) technology that they are partnering with Nanosys to manufacture. Ranging from smartphone all the way up to 55″ TVs in size, these devices were all showing a wider color gamut than OLED with an especially deep red. This seems like a lot of color but 3M says that in developing their Perceptual Quality Metric (PQM), a new analysis tool aimed at helping display makers model how different performance characteristics will affect end user experience, they found that color saturation positively affected the perception of quality.

In Samsung’s neighboring booth, I found a series of comparison demos designed to show that wide color gamut displays can be both accurate and pleasing to the eye. Each demo featured a camera feeding a live image of several colored objects to both standard and wide color gamut displays. In each case the wide gamut display was able to more accurately recreate the color of the objects in front of the camera. They also showed off the new color management capability of their flagship Galaxy S4 smartphone that allows the device to accurately display rec.709 content without oversaturation- something the previous generation S3 struggled with.

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Finally, at LG’s booth, we saw a new LCD color filter design that allows them to cover the Adobe RGB color gamut used by photographers and print professionals.

With all of this buzz, it looks like we’ll start to see wide color gamut displays start to move into the mainstream in ever larger screen sizes over the next half of this year and into 2014.