CES 2014 Display Wrap-Up

CES 2014 has come to a close and while many predicted a lackluster year, there were actually a number of interesting developments in displays. These are my top three CES 2014 display technology takeaways:

CES 2014 85" Hisense QDTV

4K is here now, content isn’t the issue anymore

Analysts are still having a tough time figuring out exactly how quickly 4K will be adopted. According to data presented by the LCD TV Association at the show, last year analysts thought we’d see about 2 million 4K sets in 2014. Actual numbers turned out to be about 13 million (with 10 million predicted in China alone). 4K is clearly happening faster than most predicted but, if anyone still doubted that 4K will be mainstream in the next couple of years, this year’s CES should have made it clear that its here today.

Just about every major set maker showed off 4K sets this year in every flavor imaginable from LCD to OLED. But, hardware has never been the real barrier to 4K adoption– it’s all about the content or lack thereof. At CES 2014, the content issue was resolved a couple of different ways: Netflix is making 4K delivery a priority and upscaling is starting to look really good. With great upscaling (in one demo I saw from Technicolor it was nearly impossible to pick native 4K from upscaled 1080P) and instantly available content from Netflix, I don’t think content availability will continue to be a barrier for 4K adoption.

Wide Color Gamut and High Dynamic Range

Both Dolby and Technicolor demonstrated some very impressive high dynamic range and wide color gamut technologies that make for much more immersive viewing experiences. With it’s new Dolby Vision technology, Dolby has created essentially a new standard that uses a layer of metadata on top of today’s broadcast standard to deliver wider gamut and dynamic range with the content creator’s intentions intact. This is significant because it won’t require a new broadcast standard. Much like their surround-sound offerings (which deliver stereo audio if you have two speakers and full surround if you have six), all you’ll need is a Dolby-capable set to see the advantages, it won’t be something the viewer has to worry about.

Similarly, Technicolor is doing some on-the-fly processing to incoming content in realtime to pull out extra dynamic range and color. Again, no change in broadcast standard required for this and that’s the key. While there’s some danger that artistic intent will be altered with this approach, the demos I saw looked great. Skin tones and memory colors were kept in check while still taking advantage of the extra saturation offered by a wide color gamut display.

Quantum Dots

One of the most impressive displays at CES 2014 was Hisense’s 85″ 4K wide color gamut Quantum Dot TV. This set promises to bring OLED-like color performance at 4K resolutions to the US market this September at LCD prices (we heard a 55″, 65″ and the 85″ will all be offered). A number of other manufacturers also demonstrated Quantum Dot displays off the main show floor. We saw displays ranging in size from 5″ smartphones, to notebooks to monitors as well as TV’s. 2014 looks to be the year that Quantum Dots gain serious traction in the display market after a strong debut in 2013.

DisplayWeek 2013: Color is back

Just back from a great DisplayWeek in Vancouver. Finally had a chance to recover, go through my notes and process everything I saw at the show. Most of the big story lines will be pretty familiar to anyone who followed last years show: TV’s are still getting bigger, OLED TV is still right around the corner, 4K is starting to ship and mobile displays are getting both sharper and more efficient.

DisplayWeek wasn’t all old news though. In fact, just like CES, this year everyone seemed to be talking about color performance. At the annual Display Industry Awards, honors in several categories went to wide gamut display technologies including the Best In Show and Component of the Year awards. And, on the show floor, major manufacturers like 3M, Samsung and LG dedicated significant booth space to wide color gamut or color management technologies.

3M's Quantum Dot Enhancement Film demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wide color gamut.

3M’s Quantum Dot Enhancement Film (QDEF) demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wider color gamut than OLED at higher brightness and lower cost.

3M demoed several wide color gamut LCDs  based on the Quantum Dot Enhancement Film (QDEF) technology that they are partnering with Nanosys to manufacture. Ranging from smartphone all the way up to 55″ TVs in size, these devices were all showing a wider color gamut than OLED with an especially deep red. This seems like a lot of color but 3M says that in developing their Perceptual Quality Metric (PQM), a new analysis tool aimed at helping display makers model how different performance characteristics will affect end user experience, they found that color saturation positively affected the perception of quality.

In Samsung’s neighboring booth, I found a series of comparison demos designed to show that wide color gamut displays can be both accurate and pleasing to the eye. Each demo featured a camera feeding a live image of several colored objects to both standard and wide color gamut displays. In each case the wide gamut display was able to more accurately recreate the color of the objects in front of the camera. They also showed off the new color management capability of their flagship Galaxy S4 smartphone that allows the device to accurately display rec.709 content without oversaturation- something the previous generation S3 struggled with.

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Finally, at LG’s booth, we saw a new LCD color filter design that allows them to cover the Adobe RGB color gamut used by photographers and print professionals.

With all of this buzz, it looks like we’ll start to see wide color gamut displays start to move into the mainstream in ever larger screen sizes over the next half of this year and into 2014.

DisplayDaily: Is quantum dot lifetime good enough for TV?

Ken Werner of Display Central has a post comparing the benefits of quantum dots to OLEDs in consumer TV applications.  Being the authority on quantum dot displays that we are here at Nanosys, Ken contacted us for an analysis.  Here is the explanation our Ph.Ds gave Ken:

OLEDs use organometalic compounds to emit light. They typically have a central metal atom surrounded by organic ligands. The decay issues are the same as with typical organic fluorophores.  In the excited state these molecules are very reactive to H2O and O2, as well as other small molecules that may be around. Once they react they become a different molecule and they will no longer fluoresce or phosphoresce and give off light. The more blue the light emission, the higher the energy of the excited state, and the more reactive the excited molecule will be. So your blue organic phosphores will have a much shorter lifetime than will red phosphores. The burn-in problem seen in OLED displays, that can be seen after just several weeks of operation with static content, is a manifestation of early blue degradation compared to green and red.

Conventional phosphores like YAG are doped materials. YAG used in white LEDs is actually cerium doped YAG. The cerium atom emits the yellow light and is surrounded by a vast amount of YAG. Quantum dots are similar in that a central core crystalline semiconductor material is used to confine the holes and electrons of the exciton (analogous to the cerium in YAG), and in our material this is surrounded by a thick shell of a different, lattice-matched semiconductor material (analogous to the YAG.) We call this a core-shell Quantum Dot structure. If the lifetime of our materials is less than that of conventional phosphors, it is typically because we have not made a perfectly lattice-matched shell, which may distort the core and cause defects at the core/shell interface that reduces the quantum yield.

The big difference here is that a perfectly made core-shell quantum dot does not have an intrinsic lifetime failure mechanism, whereas the organometallic compounds are intrinsically reactive to their environment, which makes them prone to shorter lifetimes especially at higher energies such as blue.

This is an important discussion, because TVs are a harsh environment for display components, running much hotter and brighter than tablets or mobile phones.  You can read the entire post here: http://www.display-central.com/flat-panel/is-quantum-dot-lifetime-good-enough-for-tv/