DisplayWeek 2013: Color is back

Just back from a great DisplayWeek in Vancouver. Finally had a chance to recover, go through my notes and process everything I saw at the show. Most of the big story lines will be pretty familiar to anyone who followed last years show: TV’s are still getting bigger, OLED TV is still right around the corner, 4K is starting to ship and mobile displays are getting both sharper and more efficient.

DisplayWeek wasn’t all old news though. In fact, just like CES, this year everyone seemed to be talking about color performance. At the annual Display Industry Awards, honors in several categories went to wide gamut display technologies including the Best In Show and Component of the Year awards. And, on the show floor, major manufacturers like 3M, Samsung and LG dedicated significant booth space to wide color gamut or color management technologies.

3M's Quantum Dot Enhancement Film demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wide color gamut.

3M’s Quantum Dot Enhancement Film (QDEF) demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wider color gamut than OLED at higher brightness and lower cost.

3M demoed several wide color gamut LCDs  based on the Quantum Dot Enhancement Film (QDEF) technology that they are partnering with Nanosys to manufacture. Ranging from smartphone all the way up to 55″ TVs in size, these devices were all showing a wider color gamut than OLED with an especially deep red. This seems like a lot of color but 3M says that in developing their Perceptual Quality Metric (PQM), a new analysis tool aimed at helping display makers model how different performance characteristics will affect end user experience, they found that color saturation positively affected the perception of quality.

In Samsung’s neighboring booth, I found a series of comparison demos designed to show that wide color gamut displays can be both accurate and pleasing to the eye. Each demo featured a camera feeding a live image of several colored objects to both standard and wide color gamut displays. In each case the wide gamut display was able to more accurately recreate the color of the objects in front of the camera. They also showed off the new color management capability of their flagship Galaxy S4 smartphone that allows the device to accurately display rec.709 content without oversaturation- something the previous generation S3 struggled with.

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Finally, at LG’s booth, we saw a new LCD color filter design that allows them to cover the Adobe RGB color gamut used by photographers and print professionals.

With all of this buzz, it looks like we’ll start to see wide color gamut displays start to move into the mainstream in ever larger screen sizes over the next half of this year and into 2014.

DisplayDaily: Is quantum dot lifetime good enough for TV?

Ken Werner of Display Central has a post comparing the benefits of quantum dots to OLEDs in consumer TV applications.  Being the authority on quantum dot displays that we are here at Nanosys, Ken contacted us for an analysis.  Here is the explanation our Ph.Ds gave Ken:

OLEDs use organometalic compounds to emit light. They typically have a central metal atom surrounded by organic ligands. The decay issues are the same as with typical organic fluorophores.  In the excited state these molecules are very reactive to H2O and O2, as well as other small molecules that may be around. Once they react they become a different molecule and they will no longer fluoresce or phosphoresce and give off light. The more blue the light emission, the higher the energy of the excited state, and the more reactive the excited molecule will be. So your blue organic phosphores will have a much shorter lifetime than will red phosphores. The burn-in problem seen in OLED displays, that can be seen after just several weeks of operation with static content, is a manifestation of early blue degradation compared to green and red.

Conventional phosphores like YAG are doped materials. YAG used in white LEDs is actually cerium doped YAG. The cerium atom emits the yellow light and is surrounded by a vast amount of YAG. Quantum dots are similar in that a central core crystalline semiconductor material is used to confine the holes and electrons of the exciton (analogous to the cerium in YAG), and in our material this is surrounded by a thick shell of a different, lattice-matched semiconductor material (analogous to the YAG.) We call this a core-shell Quantum Dot structure. If the lifetime of our materials is less than that of conventional phosphors, it is typically because we have not made a perfectly lattice-matched shell, which may distort the core and cause defects at the core/shell interface that reduces the quantum yield.

The big difference here is that a perfectly made core-shell quantum dot does not have an intrinsic lifetime failure mechanism, whereas the organometallic compounds are intrinsically reactive to their environment, which makes them prone to shorter lifetimes especially at higher energies such as blue.

This is an important discussion, because TVs are a harsh environment for display components, running much hotter and brighter than tablets or mobile phones.  You can read the entire post here: http://www.display-central.com/flat-panel/is-quantum-dot-lifetime-good-enough-for-tv/

CES 2012: more colorful displays on the horizon

If there is one thing we can take away from CES this year, it’s that displays with better color performance are on the horizon. Two of the largest attention getters at CES this year were new displays by Sony and LG.  LG unveiled a 55″ OLED and Sony displayed a new “Crystal LED” technology.  While both of these displays exhibited impressive performance, including a wider color gamut, the Sony TV was a prototype only, and the LG display is expected to be available later in the year at a hefty price.

As Hubert of Ubergizmo points out, these technologies offer great promise, however, cost will be their determining factor.  OLED, which has been on the horizon for what seems like forever, still looks like it will not be available to the masses for quite a while, certainly not in large formats and not at a manageable price point for the consumer.

By contrast, QDEF, offers an affordable, consumer ready solution today. Display designers who are looking for the next new thing will find that they can have a screen with high brightness, deep color, high-DPI resolution and deep blacks in a display that’s as big as they want using QDEF with no increase in cost. This is because QDEF has been designed as a drop-in diffuser sheet replacement to leverage the billions of dollars of existing installed manufacturing capacity and two-plus decades of improvements to LCD performance.  With QDEF, manufacturers can easily replace the diffuser sheet in their displays with a sheet of QDEF and gain over 100% of NTSC color performance.